Sains Malaysiana 54(3)(2025): 629-640
http://doi.org/10.17576/jsm-2025-5403-02
Growth and
Nutritional Quality in Giant Freshwater Prawn, Macrobrachium rosenbergii through Live Mealworm Feeding with Probiotic Enrichment
(Pertumbuhan dan Kualiti Nutrisi dalam
Udang Galah, Macrobrachium rosenbergii melalui Pemakanan Ulat Hidup
dengan Pengayaan Probiotik)
SASHWINIE
MURALI1, CHAIW-YEE TEOH1,3,*, WEY-LIM WONG2,3
1Department of Agricultural and Food
Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti,
Bandar Barat, 31900 Kampar, Perak, Malaysia
2Department of Biological Science, Faculty of Science, Universiti
Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak,
Malaysia
3Centre for Agriculture and Food Research, Universiti Tunku Abdul
Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
Received: 24
August 2024/Accepted: 26 November 2024
Abstract
To
address the gap in sustainable aquaculture, a 17-week feeding trial was
conducted to evaluate locally-sourced mealworms, with and without Bacillus
subtilis probiotic enrichment, as an alternative feed material for giant
freshwater prawn (Macrobrachium rosenbergii), assessing their effects on
growth, feed utilization, and nutritional composition. Five experimental diets
were tested: commercial prawn feed (CPF), CPF combined with live mealworm
(CPF+MW), mealworm alone (MW), probiotic-enriched mealworm (PMW), and CPF combined
with probiotic-enriched mealworm (CPF+PMW). Triplicate groups of 20 prawns were
randomly assigned to each diet. Weight gain among the groups ranged from
421.88% to 529.34%, with no significant differences observed (P >
0.05). Prawns fed CPF exhibited a significantly higher feed conversion ratio
(FCR) (3.72 ± 0.32, P < 0.05), indicating less efficient feed
utilization and leading to increased production costs. While CPF (45.01%) and
MW (52.44%) diets differed significantly in crude protein content, the prawns
fed CPF (59.24%) and MW (60.78%) showed similar crude protein levels. These
results suggest that live mealworms are a viable alternative to commercial feed
for GFP, maintaining growth performance and nutritional quality. Furthermore,
combining live mealworms with commercial feed proves to be an effective feeding
strategy, though enrichment with B. subtilis did not provide additional
benefits for prawn growth or FCR.
Keywords: Bacillus
subtilis; probiotic enrichment; sustainable feed; Tenebrio
molitor
Abstrak
Untuk
menangani jurang dalam akuakultur mampan, suatu kajian pemakanan selama 17
minggu telah dijalankan untuk menilai ulat tempatan dengan dan tanpa pengayaan
probiotik Bacillus subtilis sebagai bahan makanan alternatif untuk udang
galah (Macrobrachium rosenbergii), dengan menilai kesannya terhadap
pertumbuhan, penggunaan makanan dan komposisi nutrisi. Lima diet uji kaji telah
diuji: makanan udang komersial (CPF), CPF digabungkan dengan ulat hidup
(CPF+MW), ulat sahaja (MW), ulat yang diperkaya dengan probiotik (PMW) dan CPF
digabungkan dengan ulat yang diperkaya dengan probiotik (CPF+PMW). Tiga
kumpulan udang sebagai peniga sebanyak 20 ekor secara rawak diberikan bagi
setiap diet. Keputusan menunjukkan peningkatan berat dalam kalangan kumpulan
berbeza antara 421.88% hingga 529.34%, tanpa perbezaan yang signifikan
diperhatikan (P > 0.05). Udang yang diberi makan CPF menunjukkan
nisbah penukaran makanan (FCR) yang lebih tinggi secara signifikan (3.72 ±
0.32, P < 0.05), menunjukkan penggunaan makanan yang kurang cekap dan
menyebabkan peningkatan kos pengeluaran. Walaupun diet CPF (45.01%) dan MW
(52.44%) berbeza dengan ketara dalam kandungan protein kasar, tetapi udang yang
diberi CPF (59.24%) dan MW (60.78%) menunjukkan tahap protein kasar yang
serupa. Keputusan ini mencadangkan bahawa ulat hidup adalah alternatif yang
sesuai untuk makanan komersial bagi GFP, mengekalkan prestasi pertumbuhan dan
kualiti nutrisi. Selain itu, menggabungkan ulat hidup dengan makanan komersial
terbukti sebagai strategi pemakanan yang berkesan, walaupun pengayaan B.
subtilis tidak memberikan manfaat tambahan kepada pertumbuhan atau FCR
udang.
Keywords: Bacillus
subtilis; pemakanan mampan; pengayaan probiotik; Tenebrio
molitor
REFERENCES
Ahmed, A., Lodhi, S. & Shukla, S. 2021.
Observations on feeding behaviour of freshwater prawn Macrobrachium lamarrei (Crustacea: Decapoda). International Journal of Fisheries and Aquatic
Studies 9(6): 109-112.
AOAC. 1997. Official Methods of Analysis
of AOAC International Vol. 1. 16th ed. Arlington, VA, USA: Association of
Official Analytical Chemists.
Barragán-Fonseca, K.Y., Greenberg, L.O.,
Gort, G., Dicke, M. & Van Loon, J.J. 2023. Amending soil with insect
exuviae improves herbivore tolerance, pollinator attraction and seed yield of Brassica
nigra plants. Agriculture, Ecosystems & Environment 342: 108219.
Barroso, F.G., de Haro, C., Sánchez-Muros,
M.J., Venegas, E., Martínez-Sánchez, A. & Pérez-Bañón, C. 2014. The
potential of various insect species for use as food for fish. Aquaculture 422: 193-201.
Berezina, N. 2017. Mealworms, promising
beetles for the insect industry. In Insects as Food and Feed: From
Production to Consumption, edited by van Huis, A. & Tomberlin, J.K.
Wageningen, The Netherlands: Wageningen Academic Publishers. pp. 259-269.
https://doi.org/10.3920/978-90-8686-849-0
Besson, M., Aubin, J., Komen, H., Poelman,
M., Quillet, E., Vandeputte, M., van Arendonk, J.A.M. & de Boer, I.J.M.
2016. Environmental impacts of genetic improvement of growth rate and feed
conversion ratio in fish farming under rearing density and nitrogen output
limitations. Journal of Cleaner Production 116: 100-109.
Bordiean, A., Krzyżaniak, M.,
Aljewicz, M. & Stolarski, M.J. 2022. Influence of different diets on growth
and nutritional composition of yellow mealworm. Foods 11(19): 3075.
Bordiean, A., Krzyżaniak, M.,
Stolarski, M.J., Czachorowski, S. & Peni, D. 2020. Will yellow mealworm
become a source of safe proteins for Europe? Agriculture 10(6): 233.
Chakraborty, S.K. 2017. Ecological services
of intertidal benthic fauna and the sustenance of coastal wetlands along the
Midnapore (East) Coast, West Bengal, India. Coastal Wetlands: Alteration and
Remediation, edited by Finkl, C. & Makowski, C. Springer, Cham. pp.
777-866.
Chavez, M. & Uchanski, M. 2021. Insect
left-over substrate as plant fertiliser. Journal of Insects as Food and Feed 7(5): 683-694.
Chen, K., Li, E., Xu, Z., Li, T., Xu, C.,
Qin, J.G. & Chen, L. 2015. Comparative transcriptome analysis in the
hepatopancreas tissue of Pacific white shrimp Litopenaeus vannamei fed
different lipid sources at low salinity. PLoS One 10(12): e0144889.
Choi, I.H., Kim, J.M., Kim, N.J., Kim,
J.D., Park, C., Park, J.H. & Chung, T.H. 2018. Replacing fish meal by
mealworm (Tenebrio molitor) on the growth performance and immunologic
responses of white shrimp (Litopenaeus vannamei). Acta
Scientiarum. Animal Sciences 40: e35015.
https://doi.org/10.4025/actascianimsci.v40i1.39077
Chong, S.H.K., Teoh, C.Y. & Wong, W.L.
2022. Potential use of live mealworm as a sustainable feed to improve
productivity of the giant freshwater prawn, Macrobrachium rosenbergii. ASM
Science Journal 17: 1-8. https://doi.org/10.32802/asmscj.2022.1006
Chung, M.Y., Kwon, E.Y., Hwang, J.S., Goo,
T.W. & Yun, E.Y. 2013. Pre-treatment conditions on the powder of Tenebrio
molitor for using as a novel food ingredient. Journal of Sericultural
and Entomological Science 51(1): 9-14.
Colombo, S.M., Roy, K., Mraz, J., Wan,
A.H., Davies, S.J., Tibbetts, S.M., Øverland, M., Francis, D.S., Rocker, M.M.,
Gasco, L. & Spencer, E. 2023. Towards achieving circularity and
sustainability in feeds for farmed blue foods. Reviews in Aquaculture 15(3): 1115-1141.
Cruz, P.M., Ibanez, A.L., Hermosillo,
O.A.M. & Ramirez Saad, H.C. 2012. Use of probiotics in aquaculture. ISRN
Microbiology https://doi:10.5402/2012/916845
Dadvar, E., Shekarabi, S.P.H., Khazaie, E.,
Ehsani, J. & Mehrgan, M.S. 2023. Effect of mealworm (Tenebrio molitor)
larvae enriched with a commercial probiotic, protexin, on growth performance
and skin color in Oscar (Astronotus ocellatus). Journal of Animal
Environment 14(4): 181-186.
Danks, H.V. 2006. Short life cycles in
insects and mites. The Canadian Entomologist 138(4): 407-463.
Ding, Z., Xiong, Y., Zheng, J., Zhou, D.,
Kong, Y., Qi, C., Liu, Y., Ye, J. & Limbu, S.M. 2022. Modulation of growth,
antioxidant status, hepatopancreas morphology, and carbohydrate metabolism
mediated by alpha-lipoic acid in juvenile freshwater prawns Macrobrachium nipponense under two dietary carbohydrate levels. Aquaculture 546: 737314.
Department of Fisheries (DOF). 2023. Annual
Fisheries Statistics – Volume 1.
https://www.dof.gov.my/en/resources/fisheries-statistics-i/ Accessed 19 July
2024.
Dreassi, E., Cito, A., Zanfini, A.,
Materozzi, L., Botta, M. & Francardi, V. 2017. Dietary fatty acids
influence the growth and fatty acid composition of the yellow mealworm Tenebrio
molitor (Coleoptera: Tenebrionidae). Lipids 52(3): 285-294.
El-Dakar, A.Y. & Goher, T.M. 2004.
Using of Bacillus subtilis in microparticulate diets for producing
biosecure of Penaeus japonicus postlarva. Agriculture Science
Mansoura University 29: 6855-6873.
El-Saadony, M.T., Shehata, A.M., Alagawany,
M., Abdel-Moneim, A.M.E., Selim, D.A., Abdo, M., Khafaga, A.F., El-Tarabily,
K.A., El-Shall, N.A. & Abd El-Hack, M.E. 2022. A review of shrimp
aquaculture and factors affecting the gut microbiome. Aquaculture
International 30(6): 2847-2869.
Finke, M.D. 2015. Complete nutrient content
of three species of wild caught insects, pallid-winged grasshopper, rhinoceros
beetles and white-lined sphinx moth. Journal of Insects as Food and Feed 1(4): 281-292.
Folch, J., Lees, M. & Sloane Stanley,
G.H. 1957. A simple method for the isolation and purification of total lipids
from animal tissues. J. Boil. Chem. 226(1): 497-509.
Gałęcki, R., Zielonka, Ł.,
Zasȩpa, M., Gołȩbiowska, J. & Bakuła, T. 2021.
Potential utilization of edible insects as an alternative source of protein in
animal diets in Poland. Frontiers in Sustainable Food Systems 5: 675796.
Glencross, B.D., Smith, D.M. &
Williams, K.C. 1998. Effect of dietary phospholipids on digestion of neutral
lipid by the prawn Penaeus monodon. Journal of the World Aquaculture
Society 29(3): 365-369.
Glencross, B.D., Smith, D.M., Thomas, M.R.
& Williams, K.C. 2002. The effects of dietary lipid amount and fatty-acid
composition on the digestibility of lipids by the prawn, Penaeus monodon. Aquaculture 205(1-2): 157-169.
Grau, T., Vilcinskas, A. & Joop, G.
2017. Sustainable farming of the mealworm Tenebrio molitor for the production
of food and feed. Zeitschrift für Naturforschung C 72(9-10): 337-349.
Gullian, M., Thompson, F. & Rodriguez,
J. 2004. Selection of probiotic bacteria and study of their immunostimulatory
effect in Penaeus vannamei. Aquaculture 233(1-4): 1-14.
Hai, N.V. 2015. The use of probiotics in
aquaculture. Journal of Applied microbiology 119(4): 917-935.
Hénault-Ethier, L. 2017. The role of the
emerging ento(mo)technology sector to treat urban and rural organic wastes in
attaining the 2020 landfilling ban policy of Québec, Canada. Webinar.
Canadian Compost Council & Green Manitoba.
Hoseinifar, S.H., Ashouri, G., Marisaldi,
L., Candelma, M., Basili, D., Zimbelli, A., Notarstefano, V., Salvini, L.,
Randazzo, B., Zarantoniello, M., Pessina, A., Sojan, M.J., Vargas, A. &
Carnevali, O. 2024. Reducing the use of antibiotics in European aquaculture
with vaccines, functional feed additives and optimization of the gut
microbiota. Journal of Marine Science and Engineering 12(2): 204.
https://doi.org/10.3390/jmse12020204
Hua, K., Cobcroft, J.M., Cole, A., Condon,
K., Jerry, D.R., Mangott, A., Praeger, C., Vucko, M.J., Zeng, C., Zenger, K.
& Strugnell, J.M. 2019. The future of aquatic protein: Implications for
protein sources in aquaculture diets. One Earth 1(3): 316-329.
Irungu, F.G., Mutungi, C.M., Faraj, A.K.,
Affognon, H., Tanga, C., Ekesi, S., Nakimbugwe, D. & Fiaboe, K.K.M. 2018.
Minerals content of extruded fish feeds containing cricket (Acheta
domesticus) and black soldier fly larvae (Hermetia illucens)
fractions. International Aquatic Research 10: 101-113.
Jeong, S.M., Khosravi, S., Kim, K.W., Lee,
B.J., Hur, S.W., You, S.G. & Lee, S.M. 2022. Potential of mealworm, Tenebrio
molitor, meal as a sustainable dietary protein source for juvenile black
porgy, Acanthopagrus schlegelii. Aquaculture Reports 22: 100956.
Karthik, M., Bhavan, P.S. & Manjula, T.
2018. Growth promoting potential and colonization ability of probiotics (Bacillus
coagulans and Bacillus subtilis) on the freshwater prawn Macrobrachium rosenbergii post-larvae. Insights in Biology and Medicine 2: 7-18.
Kewcharoen, W. & Srisapoome, P. 2019.
Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus
vannamei) on water quality and shrimp growth, immune responses, and
resistance to Vibrio parahaemolyticus (AHPND strains). Fish &
Shellfish Immunology 94: 175-189.
Khalid, H.N.M., Jafri, N.A., Kari, Z.A.,
Mat, K., Rusli, N.D., Mahmud, M., Al-Amsyar, S.M., Sukri, S.A.M. & Harun,
H.C. 2023. Effects of different inclusion rates of pre-treated rubber seed meal
(RSM) on physicochemical properties of juvenile Macrobrachium rosenbergii feed. IOP Conference Series: Earth and Environmental Science 1286:
012036. https://doi.org/10.1088/1755-1315/1286/1/012036
Khanjani, M.H., Torfi Mozanzade, M.,
Sharifinia, M. & Emerenciano, M.G.C. 2023. Biofloc: A sustainable dietary
supplement, nutritional value and functional properties. Aquaculture 562: 738-757.
Khosravi, S., Kim, E., Lee, Y.S. & Lee,
S.M. 2018. Dietary inclusion of mealworm (Tenebrio molitor) meal
as an alternative protein source in practical diets for juvenile rockfish (Sebastes
schlegeli). Entomological Research 48(3): 214-221.
Kim, S.Y., Park, J.B., Lee, Y.B., Yoon,
H.J., Lee, K.Y. & Kim, N.J. 2015. Growth characteristics of mealworm Tenebrio
molitor. Journal of Sericultural and Entomological Science 53(1):
1-5.
Kolanchinathan, P., Kumari, P.R., Gnanam,
T.S., John, G. & Balasundaram, A. 2017. Performance evaluation of two
probiotic species, on the growth, body composition and immune expression in Penaeus monodon. Journal of Fisheries and Aquatic Science 12: 157-167.
Kolanchinathan, P., Kumari, P.R., Raja, K.,
John, G. & Balasundaram, A. 2022. Analysis of feed composition and growth
parameters of Penaeus monodon supplemented with two probiotic
species and formulated diet. Aquaculture 549: 737740.
https://doi.org/10.1016/j.aquaculture.2021.737740
Kulkarni, A., Krishnan, S., Anand, D.,
Kokkattunivarthil Uthaman, S., Otta, S.K., Karunasagar, I. & Kooloth
Valappil, R. 2021. Immune responses and immunoprotection in crustaceans with
special reference to shrimp. Reviews in Aquaculture 13(1): 431-459.
Kumar, V., Sinha, A.K., Romano, N., Allen,
K.M., Bowman, B.A., Thompson, K.R. & Tidwell, J.H. 2018. Metabolism and
nutritive role of cholesterol in the growth, gonadal development, and
reproduction of crustaceans. Reviews in Fisheries Science & Aquaculture 26(2): 254-273.
Lin, W., Luo, H., Wu, J., Hung, T.C., Cao,
B., Liu, X., Yang, J. & Yang, P. 2022. A review of the emerging risks of
acute ammonia nitrogen toxicity to aquatic decapod crustaceans. Water 15(1): 27. https://doi.org/10.3390/w15010027
López-Almonte, O.H.,
Hernández-Simón, L.M. & Aguilar-Guggembuhl, J. 2024. Costa
Rica’s potential for entotechnology development: An ecosystem and entomophagy
perspective. Journal of Insects as Food and Feed 11(2): 317-327.
https://doi.org/10.1163/23524588-00001238
Mancini, S., Fratini, F., Turchi, B.,
Mattioli, S., Dal Bosco, A., Tuccinardi, T., Nozic, S. & Paci, G. 2019.
Former foodstuff products in Tenebrio molitor rearing: Effects on
growth, chemical composition, microbiological load, and antioxidant
status. Animals 9(8): 484.
Mohideen, A.K. 2022. Crack the Whip on
Food Waste. Consumers’ Association of Penang Press Statement.
https://consumer.org.my/crack-the-whip-on-foodwaste/#:~:text=Malaysians%20dumped%204%2C046%20tonnes%20of,waste%20per%20day%20in%202021
(Accessed 10 October 2023).
Motte, C., Rios, A., Lefebvre, T., Do, H.,
Henry, M. & Jintasataporn, O. 2019. Replacing fish meal with defatted
insect meal (yellow mealworm Tenebrio molitor) improves the
growth and immunity of pacific Pacific white shrimp (Litopenaeus vannamei). Animals 9(5):
258.
Murawska, D., Daszkiewicz, T., Sobotka, W.,
Gesek, M., Witkowska, D., Matusevičius, P. & Bakuła, T. 2021.
Partial and total replacement of soybean meal with full-fat black soldier fly (Hermetia
illucens L.) larvae meal in broiler chicken diets: Impact on growth
performance, carcass quality and meat quality. Animals 11(9): 2715.
https://doi.org/10.3390/ani11092715
Nathanailides, C., Kolygas, M., Choremi,
K., Mavraganis, T., Gouva, E., Vidalis, K. & Athanassopoulou, F. 2021.
Probiotics have the potential to significantly mitigate the environmental
impact of freshwater fish farms. Fishes 6(4): 76.
https://doi.org/10.3390/fishes6040076
Ng, W.K., Lim, C.L., Romano, N. & Kua,
B.C. 2017. Dietary short-chain organic acids enhanced resistance to bacterial
infection and hepatopancreatic structural integrity of the giant freshwater
prawn, Macrobrachium rosenbergii. International Aquatic Research 9:
293-302.
Nimrat, S., Suksawat, S., Boonthai, T.
& Vuthiphandchai, V. 2012. Potential Bacillus probiotics enhance
bacterial numbers, water quality and growth during early development of white
shrimp (Litopenaeus vannamei). Veterinary Microbiology 159(3-4):
443-450.
Nunes, A.J., Sá, M.V., Browdy, C.L. &
Vazquez-Anon, M. 2014. Practical supplementation of shrimp and fish feeds with
crystalline amino acids. Aquaculture 431: 20-27.
Oonincx, D.G., Laurent, S., Veenenbos, M.E.
& van Loon, J.J. 2020. Dietary enrichment of edible insects with omega 3
fatty acids. Insect Science 27(3): 500-509.
Oonincx, D.G., van Broekhoven, S., van
Huis, A. & van Loon, J.J. 2015. Feed conversion, survival and development,
and composition of four insect species on diets composed of food by-products. PLoS
ONE 10(12): e0144601.
Panini, R.L., Freitas, L.E.L., Guimarães,
A.M., Rios, C., da Silva, M.F.O., Vieira, F.N., Fracalossi, D.M., Samuels,
R.I., Prudêncio, E.S., Silva, C.P. & Amboni, R.D. 2017. Potential use of
mealworms as an alternative protein source for Pacific white shrimp:
Digestibility and performance. Aquaculture 473: 115-120.
Paris, N., Fortin, A., Hotte, N., Zadeh,
A.R., Jain, S. & Hénault-Ethier, L. 2024. Developing an environmental
assessment framework for an insect farm operating in circular economy: The case
study of a Montréal (Canada) mealworm farm. Journal of Cleaner
Production 460: 142450. https://doi.org/10.1016/j.jclepro.2024.142450
Parolini, M., Ganzaroli, A. &
Bacenetti, J. 2020. Earthworm as an alternative protein source in poultry and
fish farming: Current applications and future perspectives. Science of
the Total Environment 734: 139460.
Patel, S. 2019. Insects as a source of
sustainable proteins. Proteins: Sustainable Source, Processing and
Applications 1(2): 41-61.
Paul, P. & Rahman, M.A. 2016. Growth
performance of fresh water prawn Macrobrachium rosenbergii under
different supplemental feeding options. International Journal of
Fisheries and Aquatic Studies 4(2): 203-207.
Pillai, B.R., Ponzoni, R.W., Das Mahapatra,
K. & Panda, D. 2022. Genetic improvement of giant freshwater prawn Macrobrachium
rosenbergii: A review of global status. Reviews in Aquaculture 14(3):
1285-1299.
Ramos-Elorduy, J., González, E.A.,
Hernández, A.R. & Pino, J.M. 2002. Use of Tenebrio molitor (Coleoptera:
Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal
of Economic Entomology 95(1): 214-220.
Rana, K.J., Siriwardena, S. & Hasan,
M.R. 2009. Impact of Rising Feed Ingredient Prices on Aquafeeds and
Aquaculture Production [pdf] Sterling: Food and Agriculture Organization of
the United Nations (FAO).
https://www.cabdirect.org/cabdirect/abstract/20103269836 (Accessed 2 April
2023).
Romano, N. & Zeng, C. 2013. Toxic
effects of ammonia, nitrite, and nitrate to decapod crustaceans: A review on
factors influencing their toxicity, physiological consequences, and coping
mechanisms. Reviews in Fisheries Science 21(1): 1-21.
https://doi.org/10.1080/10641262.2012.753404
Rumbos, C.I., Karapanagiotidis, I.T., Mente,
E., Psofakis, P. & Athanassiou, C.G. 2020. Evaluation of various
commodities for the development of the yellow mealworm, Tenebrio molitor. Scientific Reports 10(1): 11224.
Rumpold, B.A. & Schlüter, O.K. 2013.
Potential and challenges of insects as an innovative source for food and feed
production. Innovative Food Science & Emerging Technologies 17:
1-11.
Sabaté, J. & Soret, S. 2014.
Sustainability of plant-based diets: Back to the future. The American
Journal of Clinical Nutrition 100(suppl_1): 476S-482S.
https://doi.org/10.3945/ajcn.113.071522
Sales, J. & Glencross, B. 2011. A
meta‐analysis of the effects of dietary marine oil replacement with
vegetable oils on growth, feed conversion and muscle fatty acid composition of
fish species. Aquaculture Nutrition 17(2): e271-e287.
Sarman, V., Vishal, R., Mahavadiya, D.
& Sapra, D. 2018. Nutritional aspect for freshwater prawn (Macrobrachium
rosenbergii) farming. International Journal of Fauna and Biological
Studies 5(2): 172-175.
Seenivasan, C., Radhakrishnan, S.,
Muralisankar, T. & Bhavan, P.S. 2012. Bacillus subtilis on survival,
growth, biochemical constituents and energy utilization of the freshwater prawn Macrobrachium rosenbergii post larvae. The Egyptian Journal of
Aquatic Research 38(3): 195-203.
Seidel, R.A., Schaefer, R.L. &
Donaldson, T.J. 2007. The role of cheliped autotomy in the territorial behavior
of the freshwater prawn Macrobrachium lar. Journal of Crustacean
Biology 27(2): 197-201.
Sharifinia, M., Bahmanbeigloo, Z.A.,
Keshavarzifard, M., Khanjani, M.H., Daliri, M., Koochaknejad, E. & Jasour,
M.S. 2023a. The effects of replacing fishmeal by mealworm (Tenebrio molitor)
on digestive enzymes activity and hepatopancreatic biochemical indices of Litopenaeus
vannamei. Annals of Animal Science https://doi.org/10.2478/aoas-2022-0098
Sharifinia, M., Bahmanbeigloo, Z.A.,
Keshavarzifard, M., Khanjani, M.H., Daliri, M., Koochaknejad, E. & Jasour,
M.S. 2023b. Fishmeal replacement by mealworm (Tenebrio molitor) in diet
of farmed Pacific white shrimp (Litopenaeus vannamei): Effects on growth
performance, serum biochemistry, and immune response. Aquatic Living
Resources https://doi.org/10.1051/alr/2023013
Siemianowska, E., Kosewska, A., Aljewicz,
M., Skibniewska, K., Polak-Juszczak, L., Jarocki, A. & Jędras, M.
2013. Larvae of mealworm (Tenebrio molitor L.) as European novel
food. Agricultural Sciences 4(6): 287-291.
Teoh, C.Y. & Loo, E.V. 2022. Potential
of Safmannan as a feed additive for juvenile African catfish (Clarias
gariepinus): Growth, feed utilization efficiency, serum lysozyme activity,
and total viable bacterial count in the gut. Journal of Applied
Aquaculture 35(4): 865-877. https://doi.org/10.1080/10454438.2022.2034702
Teoh, C.Y. & Ng, W.K. 2016. The
implications of substituting dietary fish oil with vegetable oils on the growth
performance, fillet fatty acid profile and modulation of the fatty acid
elongase, desaturase and oxidation activities of red hybrid tilapia, Oreochromis sp. Aquaculture 465: 311-322.
Turchini, G.M., Torstensen, B.E. & Ng,
W.K. 2009. Fish oil replacement in finfish nutrition. Reviews in Aquaculture 1(1): 10-57. https://doi:10.1111/j.1753-5131.2008.01000.x
Tocher, D.R. & Glencross, B.D. 2015.
Lipids and fatty acids. In Dietary Nutrients, Additives, and Fish Health,
edited by Lee, C.S., Lim, C., Gatlin III, D.M. & Webster,
C.D. Hoboken, NJ: John Wiley & Sons. pp. 47-94.
Toledo, A., Frizzo, L., Signorini, M.,
Bossier, P. & Arenal, A. 2019. Impact of probiotics on growth performance
and shrimp survival: A meta-analysis. Aquaculture 500: 196-205.
van Huis, A. 2013. Potential of insects as
food and feed in assuring food security. Annual Review of Entomology 58:
563-583.
van Huis, A. & Oonincx, D.G. 2017. The
environmental sustainability of insects as food and feed. A review. Agronomy
for Sustainable Development 37: 43.
Xie, S., Liu, Y., Tian, L., Niu, J. &
Tan, B. 2020. Low dietary fish meal induced endoplasmic reticulum stress and
impaired phospholipids metabolism in juvenile pacific white shrimp, Litopenaeus vannamei. Frontiers in Physiology 11: 1024. https://doi:
10.3389/fphys.2020.01024
Zokaeifar, H., Luis Balcázar, J.,
Kamarudin, M.S., Sijam, K., Arshad, A. & Saad, C.R. 2012. Selection and
identification of non-pathogenic bacteria isolated from fermented pickles with
antagonistic properties against two shrimp pathogens. The Journal of
Antibiotics 65(6): 289-294.
*Corresponding author; email:
cyteoh@utar.edu.my
|